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This article presents an overview of an ongoing study on mathematical reasoning 
patterns of high school students. The initial findings came out of a study that 
examined learning processes and student understandings related to the concept of 
counterexample. More specifically, it examined the ways in which students 
understand and use counterexamples in mathematics, in the course of studying a 
special unit designed to foster opportunities for determining the validity of numerous 
mathematical statements. During the study a number of strategies, which students 
employed in the process of evaluating the validity of mathematical statements, were 
identified. These strategies involved a range of underlying cognitive processes that 
became the main focus of the current research.

BACKGROUND      
Student learning and understanding of mathematical proof has been one of the main 
issues of mathematics education research (e.g. Fischbein, 1982; Hoyles, 1997; Harel, 
2002; Mariotti, 2006). Fischbein (1982) addressed the tensions between students’ 
formal and empirical approaches to proof. Hoyles (1997) found that students have 
difficulties with proof, which derive from their reliance on empirical findings. There 
is also evidence that students often tend to employ example-based reasoning. By this 
we refer to justifications that use examples to convince one’s self or others regarding 
a certain assertion (Rissland, 1991; Zaslavsky & Shir, 2005). This is often similar to 
what Harel (2002) terms empirical proof scheme. In spite of the logical limitations of 
such reasoning in terms of generalization, it is a useful approach mathematicians 
often use to develop a 'guts feeling' regarding the validity of mathematical 
conjectures (Alcock, 2004).
From a logical perspective the use of counterexamples is very simple: one 
counterexample is sufficient to refute a false universal claim, i.e. claim of the form 

. As such, counterexamples are considered an important tool in the 
development of mathematics (Balacheff, 1991; Lakatos, 1976). Polya (1973) 
emphasises the role of counterexamples as an integral part of problem solving 
strategies, while Michener, (1978) regards counterexamples as one of the basic 
elements of expert knowledge of mathematics. 

� �,x P x#

Despite the seemingly simplicity of counterexamples, empirical studies indicate that 
students often posses wrong conceptions associated with counterexamples, their 
generation and use (Balacheff, 1989; Reid, 2002; Zaslavsky & Ron, 1998). Balacheff 
(1991) identified several different ways in which students treat counterexamples. For 
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example, many students are reluctant to accept a single counterexample as sufficient 
proof of a fallacy. Students tend to reject or treat counterexamples as exceptions. 
Kaur & Sharon (1994) found that many college students limit the domain of 
examples they check when evaluating an algebraic statement to integers, ignoring 
negative numbers, fractions and zero.  
Some logical aspects of the use of counterexamples appear to cause major difficulties 
to students (e.g., Helsabek, 1975; Dubinsky et al., 1988). Along this line, Zaslavsky 
& Ron (1997) observed several difficulties students encounter in generating and 
using counterexamples, e.g., the inability to distinguish for a given statement between 
an example that constitutes a counterexample and one that doesn’t; or the generation 
of 'non existing' counterexamples.  
THE STUDY
The purpose of the study was to examine and characterize underlying processes in 
which students engage when dealing with counterexamples, including difficulties 
they encounter. In particular, it aimed at identifying students’ ways of evaluating the 
validity of mathematical statements (both valid and faulty), with a focus on the role 
of counterexamples in these processes.  
For the purpose of the study, a teaching unit that addresses students’ difficulties with 
counterexamples was especially designed (in two parallel versions adjusted for two 
different grade levels) and implemented in two classes: top level 10th grade and low 
level 12th grade. The activities drew on students' prior mathematical knowledge of 
algebra, geometry and calculus tackling various aspects of counterexamples. The 
teaching experiment lasted about two months, during which 6 various activities were 
interwoven throughout the regular curriculum.  
The study was conducted in the form of action research (Ball, 2000), in which the 
researcher served both as developer of the learning environment and as the teacher 
implementing it. Most of the data was collected, during classroom activities, in the 
form of audio recordings of students’ interactions as they worked in small groups and 
of whole-group classroom discussions. In addition, written pre and post 
questionnaires were used, as well as the researcher's journal with field notes and 
reflections. The questionnaires were used for the purpose of triangulation as an 
additional source of information about students’ conceptions regarding 
counterexamples.  
FINDINGS
The findings suggest that engaging in different kinds of activities that emphasize 
various aspects of counterexamples, helped students improve their understanding of 
the notion of counterexample and its use. The same effect was observed in both 
research groups, regardless of the mathematical level or age of the students. The 
analysis of students’ responses revealed that students came to recognize 
counterexamples as legitimate tools for refuting false statements; they became more 
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aware of the domain of validity of mathematical universal statements and of the 
caution needed to avoid overgeneralization of conjectures. In addition, students in 
both classes improved their content knowledge, as well as their reasoning and 
communication skills. 
One of the most interesting finding was the range of strategies by which students 
approached the need to evaluate the validity of mathematical statements. These 
strategies can be described as various paths connecting sequences of points in which 
decisions need to be taken. Interestingly, similar strategies were observed in both 
high and low level students. Some recurring paths which we term patterns were 
identified.
As described above, the students' strategies consisted of sequences of decision 
making steps. Figure 1 (in the form of a flowchart) presents the various paths 
students took, including the most common type of reasoning employed at different 
stages.
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Figure 1: Students’ strategies in determining the truth value of mathematical 
statements.

As shown in Figure 1, the first step students took for a given statement was based on 
their intuition and sense of confidence. If they felt confident of its truth value (see 1ct 
& 1cf in Figure 1), they stated their assertion and supported it by example-based 
reasoning, that is, by examination of specific examples (see 2e in Figure 1). The 
continuation of the path depended to a certain extent on the truth value of the given 
statement (True or False) and on the student's initial assertion (Correct or Incorrect). 
Thus, a student who was confident that a true statement was false, could not find any 
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counterexample to support his assertion; or a student who asserted that a false 
statement was true, could have found by chance a counterexample that contradicted 
his assertion. In both cases, the example-based evidence had an effect on the student's 
final decision (see 3c & 3i in Figure 1), occasionally resulting in students shift to a 
different decision, sometimes accompanied by a modification of the original 
statement, to exclude the examples that 'didn't fit' (see 4 in Figure 1).  
Students who had no 'guts feeling' in the initial stage (see 1h in Figure 1) expressed 
hesitation and a need to gather evidence in order to form an opinion. Some turned to 
example-based reasoning, while others took a deductive approach, by attempting to 
recall relevant theorems that can help them decide (see 2e & 2d in Figure 1). In either 
approach, after some time, the students reached a decision and expressed confidence 
about it (see 1.1c in Figure 1). Clearly, the correctness of their decision depended on 
the validity of their inferences (see 5y & 5n in Figure 1).
We turn to six examples that illustrate students' reasoning patterns underlying the 
processes of determining the truth value of a given mathematical statement, along the 
paths described above. We distinguish between 4 main situations: The Statement may 
be True or False (TS / FS), and the students' initial Determination could be Correct or 
Incorrect (CD / ID). Examples 1-4 illustrate 4 different cases (TS-CD, TS-ID, FS-
CD, FS-ID). Examples 5 & 6 illustrate cases in which students did not come up with 
an initial assertion about the validity of the statement. In each of the following 
examples we begin with the statement the truth value of which students were asked to 
determine. 
Example 1(TS-CD):
Statement 1: The sum of any three odd numbers is an odd number.
Approach: This is a valid (True) statement. Many students determined correctly from 
the start that it is true, without resorting explicitly to a detailed justification. In order 
to justify their judgment students turned to an investigation of specific examples, 
which we regard as example-based reasoning (Rissland, 1991; Zaslavsky & Shir, 
2005). A typical response was: "Since � �3 1 5 3	 � � �  and � � � �7 13 1 7� 	 � 	 �  the statement is 
always true".

This is a case where students generated a number of examples satisfying the 
conditions of the statement, and (not surprisingly) did not 'bump' into a 
counterexample. From a logical point of view, this does not constitute a proof, 
because theoretically there could be a counterexample that has not been found yet. 
However, since this statement is true, no counterexample exists.  
Example 2 (TS-ID):
Statement 2: The domains of function � �f x  and its derivative � �f x�  are not 
necessarily the same.
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Approach: This is a true statement, which some students determined first as false. 
Students’ initial intrinsic feeling was that the statement is false, i.e. they wrongly 
asserted that the domains of any function f(x) and its derivative f '(x) must always be 
the same. In order to support their answer, students checked several examples, and 
came up with an answer, such as: "This statement is false…we tried some examples... 
Like y � x …"

In terms of students' approach, this is similar to Example 1. This answer is 
particularly interesting, since in the case of � �f x � x , the domains of the function 
and its derivative are in fact different. This function could have served either as a 
counterexample to the student’s initial decision, or as a proof that the statement is 
true. It seems like an initial intuitive feeling influenced not only students’ choice of 
inference, but also their perception of the evidence they collected.
Example 3 (FS-CD): 
In this case, students’ task was to determine whether the given statement is always 
true, can be true in some cases or never true: 
Statement 3: In order to multiply a number by 10, you just need to write an additional 
"0" to its right. 
Approach: This is a false statement, which some students wrongly identified as 
'always true'. In order to justify their initial assertion, they conducted a short 
investigation with different numbers, and came up with a counterexample (e.g., 0.4). 
Students accepted it as a refutation of the statement and modified their assertion. 
They also made an attempt to adjust its domain of validity by excluding the 
contradicting examples and refining the statement. Their final answer was something 
like: "The statement is false, since 0.4 doesn’t satisfy it. But, it’s true for all numbers larger 
than 1". It’s easy to see that also the new statement proposed by the students is false.  
The process of modification of a statement by excluding counterexamples and 
refining its domain of validity is a rational way of treating a mathematical statement 
(Lakatosh, 1976). But in this case students missed a crucial step. The validity of the 
'new' modified statement needs to be examined. This step was ignored by students in 
both groups, even by students in high level class. 
Ending an evaluation process without checking the validity of a new statement is 
logically incorrect. On several occasions students arrived at erroneous statements 
because they failed to check their new conjectures.
Example 4 (FS-ID): 
Statement 4: If two triangles have 2 sides and 3 angles that are equal, then the 
triangles are congruent. 
Approach: This is a false statement. Students (in the high level class) noticed 
immediately that the word “respectively” is missing and suspected that the statement 
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is false. In order to refute this statement they initiated an explicit search for a 
counterexample. When they couldn’t find one, students came up with the following 
sketch claiming it constitutes a counterexample (Figure 2).  

Figure 2: A non-existing 'counterexample' suggested by students 

In this case, the students’ intuition about the statement was correct, but they were not 
able to systematically construct a valid counterexample. Instead, they supported their 
claim by creating what they thought were two triangles that have 5 equal elements (as 
required) but are not congruent (although in their drawing they look as if they are 
congruent). However, by imposing too many conditions the resulting 'triangles' in 
Figure 2 do not exist, thus, cannot serve as a counterexample. At some point, during 
their discussion, students realized this problem, but were not able to figure out where 
exactly they went wrong. 
Example 5:
Statement 5: The function   never gets negative values.4 12 12y x x� � �

Approach: Students had no initial feeling whether the statement is true or false. Thus, 
they expressed the need to investigate the matter further in order to gather evidence 
for determining the truth value of the given statement. Students first turned to 
consideration of special examples (e.g., negative numbers, fractions, 2, -2), that is a 
bottom-up approach:   

Student 1: Listen to me. For this to be negative x must be a fraction. 

Student 2: Why?  

Student 1: If it is not a fraction, then 4x  is…more. If it’s 2, then it’s much bigger 
because…

Student 3: No. Wait. The function never gets negative values. Why? [because] if we 
take 2, how much is ? [….] and if we take (-2)? 16. So…ok…also not 
good. What if we take a number smaller than 1?  

42

Another approach was a top-down one. Students tried to retrieve an appropriate rule 
or theorem that would help them determine whether the given statement is false or 
true. An example of such an approach can be found in the following reaction: 

Student 1:  Can’t we prove it using derivatives and all the stuff we usually do? It says 
here “function”, and we are trying numbers. It’s a function…y is above 
zero. So. It never gets negative values… 

Student 2: Never below zero for any x.
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Student 1: No. [only] if we prove that it’s always above zero, then it’s true… 

As a result of both approaches, students developed confidence about the statement, 
i.e., they became convinced that the statement is false. Both kinds of reasoning led 
students to the right conclusion through logically valid inferences.
Example 6:
In this case, students’ task was to determine whether the given statement is always 
true, can be true in some cases or never true: 
Statement 6: For any real values of  such that: , ,a b c 1 1a b c 1	 	 	� � , it follows that: 

.a b c� �

Approach: This statement is false. Moreover, for any values of a, b, c, the two 
conditions ( & ) cannot co-exist. Similar to the case described 
in Example 5, here too students had no initial feeling regarding the validity of the 
given statement. More precisely, students were uncertain whether or not there are any 
values at all for a, b, c for which the two conditions 

1 1a b c	 	� � 1	

1

a b c� �

1 1a b c	 	 	� �  and exist.
They expressed the need to investigate the matter in order to gather evidence to form 
an opinion. Students who chose an example-based inductive approach gave responses 
that were similar to: " … It’s never true, because no such numbers exist. No
numbers satisfy this equation."

a b c� �

1 11 1 1	 	� � 1	

1
Students who chose a deductive approach, began by performing some algebraic 
manipulations on the equation: 1 1a b c	 	 	� � , in order to find out whether it has any 

solutions. A typical response of this kind was: " 1 1 1 bca
a b c b c

�� � �
�

 … so the 

statement is never true."
None of the students completed the task, although the top level students had the 
algebraic skills needed to do it. It seems that both example-based and deductive 
approaches were used by students only to gather cues regarding the truth value of the 
given statement. They searched for evidence that would help them form an opinion 
and build confidence in it. Once they were confident in their assertion, they ended the 
work, without noticing that their way of justification and reasoning was incomplete.  
DISCUSSION
Our findings point to patterns of students' mathematical reasoning in the context of 
examining the truth values of mathematical statements that they have not studied 
beforehand. Some concur with the vast literature on proof (e.g. Harel, 2002; 
Balachef, 1991; Fischbein, 1987; Zaslavsky & Shir, 2005); particularly, students’ 
reliance on intuitive evaluation of mathematical statements and their rapid use of 
example-based reasoning. However, there are some unique contributions of this study 
to our understanding of students' ways of reasoning.  
Most studies, concerning students’ proof practices focus on the way students prove 
conjectures, not on the ways they disprove them. Knuth (2002) pointed out that most 

Working Group 4

CERME 5 (2007) 567



classroom activities related to proof emphasise its role in validation. Students are 
often expected to prove results that seem obvious to them. Consequently, it is 
difficult for students to develop an appreciation of the need to prove. This concurs 
with Mariotti's view (2006) that if proof does not contribute to knowledge 
construction through activities that integrate a social dimension, it is likely to remain 
meaningless and purposeless in students’ eyes.  
The setting of our study relied to a large extent on the element of uncertainty as a 
trigger for examining the truth value of mathematical statement, in the spirit 
advocated by Mariotti. We provided a rich environment for fostering a genuine need 
for reasoning and revealing students' spontaneous approaches to justification and 
proof. Their search for convincing evidence was driven by their uncertainty regarding 
the validity of a statement, rather than by an external requirement to prove. Students 
had to determine the validity of mathematical statements, produce arguments to 
support their assertions and communicate their mathematical ideas to their peers. In 
addition, these arguments became a subject for whole class discussions, eliciting 
comparisons with arguments that are acceptable, i.e., that are already stated and 
shared in the mathematics community (Mariotti, 2006).    
This special learning environment provided us with opportunities to identify students' 
natural tendencies and preferences. Thus, we identified strengths and weaknesses of 
students' inferences. For example, there were little rejections of counterexamples by 
students, contrary to the findings of Balacheff (1991). On the other hand, students 
tended to accept statements that they had modified without testing their validity.
We would like to offer another lens through which to examine our findings. In recent 
years, a number of researches in the psychology of thinking and reasoning have 
advocated 'dual process' theories of cognition (Evans, 2003; Kahneman, 2002; 
Stanovich & West, 2000). However, current theories of reasoning propose that the 
term 'dual process' does not suggest the existence of two distinct systems, but rather 
two cognitive processes that might reflect different modes of one complex system 
(Osman, 2003). We would like to apply a dual framework to our findings since it 
provides useful characteristics of students’ cognitive processes, but without making 
strong assumptions about underlying mechanisms. The word “system” is used here as 
a broad term for mode or process.      
The dual framework contrasts implicit cognitive processes (fast, unconscious, 
automatic) with explicit processes (slow, conscious, and controlled). The labels 
"System 1" and "System 2" are associated with these two modes of cognitive 
functioning (Kahneman, 2002). The framework suggests four ways in which 
judgment may be made. (1) No intuitive response comes to mind, and the judgment is 
produced by System 2. (2) An intuitive judgment or intention is evoked and (2a) is 
endorsed by System 2; or (2b) serves as an anchor for adjustments that respond to 
other features of the situation; or (2c) is identified as incompatible with a subjectively 
valid rule, and blocked from overt expression (Kahneman, 2002). 
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The observed paths of students’ reasoning concur with these ways, described by 
Kahneman. Examples 5 & 6 refer to the option (1), when no initial intuitive feeling 
regarding the truth value of a statement occurred. Determination whether the given 
statement is true or false was made by System 2, in other words, through explicit 
analytical process.
Examples 1-4 refer to option (2), when System 1 was evoked and students got an 
immediate feeling of confidence regarding the truth value of the statement. This 
feeling became a subject of further explicit analytical investigation, as part of the 
function of System 2. In the case of Example 3, students discovered a 
counterexample that served a basis for correcting their initial response. The initial 
assertion was overridden by System 2 while a counterexample served as an anchor 
for modification of the intuitive answer. This is consistent with option (2b) in the 
described above ways of judgment.  
Examples 1, 2 & 4 refer to option (2a), meaning that System 1 came up with an initial 
response that was endorsed by System 2. In Example 1, this endorsement is justified 
and students arrived at a correct decision. In Examples 2 & 4 System 2 failed in its 
function of monitoring the output of System 1. Students’ intuitive impression was so 
powerful, that they did not recognise a counterexample when they saw it (Example 2) 
or created a non existent counterexample, when they had a strong conviction that a 
statement is false (Example 4).
In all patterns described above, we witnessed the strong affect of implicit intuitive 
reactions that guided students’ mathematical behaviour. This phenomenon has wide 
empirical and theoretical support (Fischbein, 1987).   
Explicit analytical thinking was also present in students' reasoning which we 
documented. This can be seen in their: attempted [direct] search for inductive 
evidence; discovery or construction of counterexamples and when seeming 
appropriate - modification of statements. These manifestations constitute strong 
evidence that an analytical cognitive process is present in students’ reasoning and is 
part of their thinking strategies.
Behaviour such as ad hoc modification of a statement and its acceptance without 
further testing, preliminary termination of investigation, and overgeneralization of 
inductive evidence, suggests that the strength of an intuitive impression can interfere 
with analytical cognitive processes. Intuitive cognitive processes may be directing the 
final judgment, sometimes ignoring the relevant cues or relevant content knowledge. 
More research is needed to fully characterise students’ strategies in determining a 
truth value of mathematical statements. Elaboration of those findings in extensive 
theoretical framework, like the dual process theory outlined here, can contribute to 
broader interpretation of research findings and better understanding of students’ 
mathematical reasoning. 
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