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We offer a mathematical framework for dealing with the question "What does it mean 
to understand the status of examples in determining the validity of mathematical 
statements?" Our framework presents the interplay between four types of examples 
(confirming, non-confirming, contradicting, and irrelevant) with respect to the 
validity of two types of mathematical statements (universal and existential). This 
framework provides a basis for constructing tasks that assess and support students' 
understanding of the logical connections between examples and statements. We 
illustrate the strength of this framework by examining one student's evolving 
understanding of the status of examples in proving or refuting a mathematical claim, 
in the course of dealing with one of the tasks that were designed in accordance with 
the framework.

BACKGROUND

A tension between empirical and formal aspects of mathematics has been broadly 

recognised as one of the major sources of students’ difficulties with proving (Epp, 

2003; Fischbein, 1987). This tension can be seen in students’ tendency to rely on 

specific examples as sufficient for determining that a general claim is true. Harel & 

Sowder (1998) term this type of reasoning empirical proof scheme, while Rissland 

(1991) and Zaslavsky & Shir (2005) refer to it as example based reasoning. At the 

same time, there is evidence that students have difficulties with counterexamples, 

thus often regard them as exceptions, insufficient to refute a (false) claim (Reid, 

2002). This tension suggests that understanding of the logical relations between 

examples and statements is a non-trivial accomplishment, which is critical for 

proving. However, this kind of understanding is not usually addressed explicitly in 

school curriculum. 

Our study stems from this unfortunate state of affairs and focuses on the question 

“What does it mean to understand the status of examples in determining the validity 

of mathematical statements, and how may this understanding be captured?” In order 

to answer this question be began with a mathematical analysis that partly builds on 

the works of Zaslavsky & Ron (1998), Buchbinder & Zaslavsky (2007), Barkai et al 

(2002). In particular, similar to the work of Barkai and her colleagues, we examine 

two types of mathematical statements (universal and existential). While they deal 
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mainly with methods of proving, we specifically examine the status of examples in 

proving and disproving. We offer a general framework that can be used to guide 

investigation of this kind of mathematical understanding.    

MATHEMATICAL FRAMEWORK

Generally, mathematical statements can be classified into two main categories: 

universal and existential, according to the type of quantifier that appears (sometimes 

implicitly) in the statement. A universal statement asserts that a proposition P(x) is 

true for all values of the variable x in a particular domain D ( x D, P( x )� � ); while an 

existential statement asserts that there is an element in a domain D for which a 

proposition P(x) is true ( x D, P( x )� � ).

We propose a framework and illustrate it through the domain D - the set of all 
parallelograms, and the proposition P(x) - indicating the property of having two 
diagonals of equal length. Thus, the corresponding universal statement is: “All
parallelograms have two diagonals of equal length” while the corresponding 

existential statement is: “There exists a parallelogram which has two diagonals of 
equal length”. Depending on whether x is an element of the above domain D (that is, 

whether it is a parallelogram or not), and whether the proposition P(x) holds for it 

(that is, whether it has two diagonals of equal lengths or not), it can be classified as 

one of four types of examples (Figure 1).  

Thus, we illustrate the first type of example by a rectangle, which is a parallelogram 

with equal-length diagonals ( )x(P,Dx� ); we term it a confirming example, for both 

the universal and existential statements. However, its status with respect to 

determining the truth value of these two types of statements is different: while, this 

example is sufficient for proving the existential statement, it is insufficient for 

proving the universal one. 

The second type of example is an element of D, which does not satisfy the property 

P(x) ( )x(P,Dx �� ); for example, a (non-rectangle) rhombus, which is a 

parallelogram with unequal diagonals. With respect to the (false) universal statement 

it constitutes a counterexample that contradicts it, thus is sufficient for disproving it. 

However, with respect to the corresponding existential statement, this example 

violates the property P, does not confirm it, and yet does not contradict it either. 

Thus, the above rhombus is non-applicable for proving, and insufficient for 

disproving the existential statement. We term such example a non-confirming
example for an existential statement, opposed to contradicting its corresponding 

universal statement. 

The other two types of examples can be viewed as members of the same category 

since they both represent elements that do not belong to the domain D. As such, they 

are irrelevant for evaluating the validity of both universal and existential statements. 

Nonetheless, there is an important distinction between these two types of irrelevant 
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examples. An isosceles trapezoid is not a parallelogram
1
 but it has two diagonals of 

equal length ( )x(P,Dx� ), while a right-angle trapezoid, which in addition to not 

being a parallelogram has diagonals of unequal length ( )x(P,Dx �� ), is another type 

of irrelevant example. 

The Domain: 

The Proposition: 

D: The set of all parallelograms

P(x): Equal-length diagonals 

Type of  Statement Universal statement

x D, P( x )� �

(All parallelograms have 

equal-length diagonals)

Existential Statement 

)x(P,Dx��

(There exists a 

parallelogram with equal-

length diagonals)

Goal

Type of  Example  

To prove To 

disprove

To prove To 

 disprove 

Confirming )x(P,Dx�

(a rectangle) 

Insufficient
Non

applicable
Sufficient

Non

applicable

Contradicting (the

universal statement)

Non-confirming (the 

existential statement.)
)x(P,Dx ��

(a rhombus) 

Non

applicable
Sufficient

Non

applicable
Insufficient

Irrelevant )x(P,Dx�

(an isosceles trapezoid) 

Non

applicable

Non

applicable

Non

applicable

Non

applicable

Irrelevant )x(P,Dx ��

(a right-angled trapezoid) 

Non

applicable

Non

applicable

Non

applicable

Non

applicable

Figure 1: A framework for examining the status of examples in determining the 

validity of mathematical statements (illustrated with respect to a specific proposition)

                                          
1 According to the definition accepted in many countries, a trapezoid has exactly two parallel sides.  
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As suggested by their name, irrelevant examples are non-applicable for neither 

proving nor disproving any type of mathematical statement. In spite of their logical 

resemblance, the two types of irrelevant examples may affect students’ decision 

process quite differently. 

We consider “understanding of the status of examples in determining the validity of 

mathematical statements” as becoming fluent with the logical inferences that can and 

cannot be made based on the different types of examples with respect to the validity 

of the two kinds of statements that appear in Figure 1.

THE STUDY 

Goals

We report on one part of a larger study, the goals of which were: 

1. To learn about students’ existing conceptions associated with the roles and status 

of examples in determining the validity of mathematical statements;  

2. To examine students’ tendency to generate and use examples in the context of 

determining the validity of mathematical statements;  

3. To trace the development of students’ understanding of the roles and status of 

examples in proving and disproving. 

Data Collection and Analysis 

The data for this paper was collected in the course of an individual interview with 

Debby, a 10
th

 grade, average level student, while she was dealing with one of the 

tasks, specially designed for the study (see below). No time constrains were set. She 

was also allowed to go back and check her previous answers. The interview 

(conducted by the first author) lasted for one hour. It was audio taped and transcribed.

Following our framework (Figure 1), the student's work was analysed in terms of the 

manifestations of her understanding of the status of examples in determining the 

validity of mathematical statements. In particular, four types of cognitive activity in 

which she was engaged were examined: example generation, example recognition 

(i.e., in terms of Figure 1), logical inference, justification and explanation supporting 

her inferences.

Instruments

The research instruments consist of a collection of tasks that were constructed 

according to our above framework. One of the tasks includes three false universal and 

three true existential statements, which deal with basic arithmetic and algebraic facts 

taken from the content of school mathematics (Figure 2). The task is to determine, for 

each statement, whether it is true or false, and to explain why. For most statements, 

several confirming, non-confirming and counterexamples can be found. 
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For each of the following statements determine whether it is true or false. 

Explain (prove) your answer. 

1. If n is an even number, then 0na �  for any integer a.

2. If � 	2ba 
  is an even number, then both a and b are even. 

3. For any prime number, if we change the order of its digits, the 

resulting number is also a prime. 

4. There exist two numbers a and b the sum of which is greater than one 

of them and smaller than the other. 

5. There exists a two-digit integer for which the sum of its digits is equal 

to their product. 

6. There exists a natural number n, the square of which is smaller than 

the number n itself. 

Figure 2: The task used for the pilot study. 

FINDINGS 

Debby began with the first three (universal) statements and used both confirming and 

contradicting examples in her attempts to evaluate their validity. She was 

unpleasantly surprised by the fact that she had found these two types of examples that 

seemed to her that could not co-exist (she explicitly stated this later during the 

interview), nonetheless, she correctly concluded that these three statements were 

false. Debby claimed that she “…found an example that the statement is true and also an 

example that it is false…. Conclusion -  the statement is false…it’s not true in all cases”.
Using our framework at this point to asses Debby’s understanding of the logical 

connections between examples and statements, we could say that Debby was able to 

construct several relevant examples and recognise their type. She inferred and 

correctly explained that confirming examples were insufficient for proving the 

statements, but a single contradicting example was sufficient to disprove them. 

Inconsistencies in Debby’s understanding only became apparent when she tried to 

apply the same techniques to evaluate existential statements.

For statement #4 (Figure 2) Debby found two non-confirming examples and one 

confirming example: 011 �
� . She concluded: “Here the statement is true. 0 is smaller 

than 1 and greater than (-1). This means that the statement can be true and [at the same 

time] can be false.” When pressured by the interviewer to choose a single answer: 

“true” or “false”, after an initial state of uncertainty, Debby decided that the 

statement is true: “It’s true. […] I can’t choose “false” if I give you a proof that it’s true”.

From Debby’s correct answers to all the items in the task (up to this point), it seemed 

that she was fully aware of the distinction between universal and existential 

statements. However, her remark about the statement being “both true and false” 

stood in contrast with her actions, so we decided to ask her to further explain.
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Int:  What is the difference between statements #3 & #4?  

Debby:  The difference is ... that here it’s true and here it’s false. Here [# 3] we provided 

a proof that it is false and here [# 4] I gave you a proof that it is true. 

This excerpt shows that Debby was either unaware that one statement is universal 

and the other is existential or that she just couldn’t express it. Her response to 

statement #5 revealed that she was indeed unaware of the difference between 

universal and existential statements and of the status of confirming examples in 

determining the validity of the latter.   

For statement #5 (Figure 2) Debby had found two non-confirming examples, and was 

just about to infer that there is no two-digit number for which the sum of its digits is 

equal to their product, when she discovered a confirming example.  

Debby: I think no such number exists. Ah, sorry, it does. 22. The sum of the digits is 4, 

their product is also 4. So such statement exists. It means that the statement 

is….both true and false! So?! [...] I would choose “false”. I can’t determine that 

it’s true when it’s not true for all cases.

Note, that for both existential statements (#4 & #5) Debby had found two non-

confirming and one confirming example, but inferred that statement #4 is true and 

statement #5 is false, because “it’s not true for all cases”. This inconsistency further 

indicated that Debby did not distinguish between universal and existential statements. 

In addition, she stated (repeatedly) that a statement can be true and false at the same 

time. However, Debby found this “conclusion” problematic, as indicated in the next 

excerpt:

“In all my previous answers it could be both true and false. And also here: it doesn’t 

matter which answer I select! That’s the problem. [...] For any answer I choose, even if it 

is true or false, I’ve proved that it is both true and false. So, any answer will be incorrect. 

What I could write is, that the statement is true but not for all cases. […] I see that it 

keeps coming up, so I think that something is wrong here. …I have to say this.” 

In order to help Debby resolve the uncertainty she was experiencing, we asked her to 

reflect again on her responses to statements #3, #4 & #5 and to try to reach 

consistency among them. After careful examination Debby replied:    

Debby: Here [#3] they are talking about all numbers, and here [#4 & #5] they don’t 

refer to all numbers… Here [#3] it can be both true and false, but they say “all 

numbers”, so it has to be only one correct answer.

Int. :  What do you mean?  

Debby: A single answer. If I choose “false” it has to be “false”. […] For these two [#4 

& #5] they say that there are numbers that satisfy these statements. […] but 

they don’t say that this is so in all cases.

Int.  So is it true or false?  

Debby: Both! Just like I said before.  […] They say that there exist such numbers, but 

not all of them.  
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Int.:  Have “they” asked for that?  

Debby went back to compare her answers once again. After a while she said:

I told you before that here [#4] it can be both true and false? I was wrong. It’s only 

true.[...] I didn’t understand the statement properly. I was sure that they are talking about 

all numbers, as I wrote here [#3]. Now I’m sure that #4 is true, and this answer [false] is 

out of the question. Beforehand, I thought that they mean all numbers, so I said that it can 

be both true and false. I understand now that they only say that such numbers exist. Not 

all of them, but there are such.

This was a moment of insight for Debby. After that she was able to determine and 

correctly justify that statement #5 is also true, and to complete the rest of the task.  

We apply our framework to analyse Debby’s initial and growing understanding of the 

logical connections between examples and statements in course of dealing with the 

task. All the examples that Debby constructed were relevant, and she was able to 

recognize their type (without using our terms): confirming, non-confirming or 

contradicting. For universal statements Debby was able to correctly infer their 

validity and logically justify her conclusion. The gaps in her understanding surfaced 

when she tried to use a rule of thumb “a theorem must be true in all cases” with 

existential statements (#4 & #5). Despite her ability to construct and recognise
correctly the type of examples with respect to the statements, Debby had trouble to 

infer their truth value correctly or consistently (i.e., statements #4 & #5). She was 

especially confused by the existence of both confirming and non-confirming 

examples.

During the interview, we tried to minimize our intervention, allowing Debby to 

reason freely and reach the conclusions by herself. At the same time we kept insisting 

that she commits to a single response for each statement (true or false), and that she 

responds consistently. It seems that these two demands contributed to the 

development of Debby’s understanding, by allowing her to become aware of the 

distinction between universal and existential statements, as well of the status of 

different types of examples in determining their validity. As she stated explicitly, this 

awareness helped her realise that a statement can be either true or false, but not both. 

Another indication of the development in Debby’s understanding can be seen in her 

increasing ability to correctly justify her responses to the task.

CONCLUDING REMARKS 

In this article we presented a framework for dealing with the status of examples in 

determining the validity of mathematical statements. As shown above, this 

framework proved useful in constructing tasks that elicit the logical connections 

between examples and statements, as well as in assessing this kind of understanding.  

The specific features of the task, which included both universal and existential 

statements that have confirming and non-confirming or contradicting examples, 

seemed to contribute to the development of Debby’s understanding. These features 

created for her a sense of uncertainty and doubt, which have been broadly recognized 
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as a powerful vehicle for learning mathematics (Hadas, Hershkowitz, & Schwarz, 

2000; Zaslavsky, 2005). Debby’s resolution of the state of uncertainty resulted in her 

better understanding of logical issues associated with the status of examples in 

determining the validity of mathematical statements.  
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